Матрицы, действия над матрицами. Обратная матрица. Ранг матрицы. Матрицы и операции над ними Определение матрицы и действия над ними

Матрицей размерности называется прямоугольная таблица, состоящая изэлементов, расположенных вm строках и n столбцах.

Элементы матрицы (первый индексi − номер строки, второй индекс j − номер столбца) могут быть числами, функциями и т. п. Матрицы обозначают заглавными буквами латинского алфавита.

Матрица называется квадратной , если у нее число строк равно числу столбцов (m = n ). В этом случае число n называется порядком матрицы, а сама матрица называется матрицей n -го порядка.

Элементы с одинаковыми индексами образуютглавную диагональ квадратной матрицы, а элементы (т.е. имеющие сумму индексов, равнуюn +1) − побочную диагональ .

Единичной матрицей называется квадратная матрица, все элементы главной диагонали которой равны 1, а остальные элементы равны 0. Она обозначается буквой Е .

Нулевая матрица − это матрица, все элементы которой равны 0. Нулевая матрица может быть любого размера.

К числу линейных операций над матрицами относятся:

1) сложение матриц;

2) умножение матриц на число.

Операция сложения матриц определена только для матриц одинаковой размерности.

Суммой двух матриц А и В называется матрица С , все элементы которой равны суммам соответствующих элементов матриц А и В :

.

Произведением матрицы А на число k называется матрица В , все элементы которой равны соответствующим элементам данной матрицы А , умноженным на число k :

Операция умножения матриц вводится для матриц, удовлетворяющих условию: число столбцов первой матрицы равно числу строк второй.

Произведением матрицы А размерности на матрицу В размерности называется матрицаС размерности , элементi -ой строки и j -го столбца которой равен сумме произведений элементов i -ой строки матрицы А на соответствующие элементы j -го столбца матрицы В :

Произведение матриц (в отличие от произведения действительных чисел) не подчиняется переместительному закону, т.е. в общем случае А В В А .

1.2. Определители. Свойства определителей

Понятие определителя вводится только для квадратных матриц.

Определителем матрицы 2-го порядка называется число, вычисляемое по следующему правилу

.

Определителем матрицы 3-го порядка называется число, вычисляемое по следующему правилу:

Первое из слагаемых со знаком «+» представляет собой произведение элементов, расположенных на главной диагонали матрицы (). Остальные два содержат элементы, расположенные в вершинах треугольников с основанием, параллельным главной диагонали (и). Со знаком «-» входят произведения элементов побочной диагонали () и элементов, образующих треугольники с основаниями, параллельными этой диагонали (и).

Это правило вычисления определителя 3-го порядка называется правилом треугольников (или правилом Саррюса).

Свойства определителей рассмотрим на примере определителей 3-го порядка.

1. При замене всех строк определителя на столбцы с теми же номерами, что и строки, определитель своего значения не меняет, т.е. строки и столбцы определителя равноправны

.

2. При перестановке двух строк (столбцов) определитель меняет свой знак.

3. Если все элементы некоторой строки (столбца) нули, то определитель равен 0.

4. Общий множитель всех элементов строки (столбца) можно вынести за знак определителя.

5. Определитель, содержащий две одинаковые строки (столбца), равен 0.

6. Определитель, содержащий две пропорциональные строки (столбца), равен нулю.

7. Если каждый элемент некоторого столбца (строки) определителя представляет сумму двух слагаемых, то определитель равен сумме двух определителей, в одном из которых в том же столбце (строке) стоят первые слагаемые, а в другом − вторые. Остальные элементы у обоих определителей одинаковые. Так,

.

8. Определитель не изменится, если к элементам какого-либо его столбца (строки) прибавить соответствующие элементы другого столбца (строки), умноженные на одно и то же число.

Следующее свойство определителя связано с понятиями минора и алгебраического дополнения.

Минором элемента определителя называется определитель, полученный из данного вычеркиванием той строки и того столбца, на пересечении которых этот элемент расположен.

Например, минором элемента определителя называется определитель .

Алгебраическим дополнением элементаопределителя называется его минор, умноженный на, гдеi − номер строки, j − номер столбца, на пересечении которых находится элемент . Алгебраическое дополнение обычно обозначается. Для элементаопределителя 3-го порядка алгебраическое дополнение

9. Определитель равен сумме произведений элементов какой-либо строки (столбца) на соответствующие им алгебраические дополнения.

Например, определитель можно разложить по элементам первой строки

,

или второго столбца

Свойства определителей применяются для их вычисления.


В этой статье мы разберемся как проводится операция сложения над матицами одного порядка, операция умножения матрицы на число и операция умножения матриц подходящего порядка, аксиоматически зададим свойства операций, а также обсудим приоритет операций над матрицами. Параллельно с теорией будем приводить подробные решения примеров, в которых выполняются операции над матрицами.

Сразу заметим, что все нижесказанное относится к матрицам, элементами которых являются действительные (или комплексные) числа.

Навигация по странице.

Операция сложения двух матриц.

Определение операции сложения двух матриц.

Операция сложения определена ТОЛЬКО ДЛЯ МАТРИЦ ОДНОГО ПОРЯДКА. Другими словами, нельзя найти сумму матриц разной размерности и вообще нельзя говорить о сложении матриц разной размерности. Также нельзя говорить о сумме матрицы и числа или о сумме матрицы и какого-нибудь другого элемента.

Определение.

Сумма двух матриц и - это матрица, элементы которой равны сумме соответствующих элементов матриц А и В , то есть, .


Таким образом, результатом операции сложения двух матриц является матрица того же порядка.

Свойства операции сложения матриц.

Какими же свойствами обладает операция сложения матриц? На этот вопрос достаточно легко ответить, отталкиваясь от определения суммы двух матриц данного порядка и вспомнив свойства операции сложения действительных (или комплексных) чисел.

  1. Для матриц А , В и С одного порядка характерно свойство ассоциативности сложения А+(В+С)=(А+В)+С .
  2. Для матриц данного порядка существует нейтральный элемент по сложению, которым является нулевая матрица. То есть, справедливо свойство А+О=А .
  3. Для ненулевой матрицы А данного порядка существует матрица (–А) , их суммой является нулевая матрица: А+(-А)=О .
  4. Для матриц А и В данного порядка справедливо свойство коммутативности сложения А+В=В+А .

Следовательно, множество матриц данного порядка порождает аддитивную группу Абеля (абелеву группу относительно алгебраической операции сложения).

Сложение матриц - решения примеров.

Рассмотрим несколько примеров сложения матриц.

Пример.

Найдите сумму матриц и .

Решение.

Порядки матриц А и В совпадают и равны 4 на 2 , поэтому мы можем проводить операцию сложения матриц и в результате должны получить матрицу порядка 4 на 2 . Согласно определению операции сложения двух матриц, сложение производим поэлементно:

Пример.

Найдите сумму двух матриц и элементами которых являются комплексные числа.

Решение.

Так как порядки матриц равны, то мы можем выполнить сложение.

Пример.

Выполните сложение трех матриц .

Решение.

Сначала сложим матрицу А с В , затем к полученной матрице прибавим С :

Получили нулевую матрицу.

Операция умножения матрицы на число.

Определение операции умножения матрицы на число.

Операция умножения матрицы на число определена ДЛЯ МАТРИЦ ЛЮБОГО ПОРЯДКА.

Определение.

Произведение матрицы и действительного (или комплексного) числа - это матрица, элементы которой получаются умножением соответствующих элементов исходной матрицы на число , то есть, .

Таким образом, результатом умножения матрицы на число является матрица того же порядка.

Свойства операции умножения матрицы на число.

Из свойств операции умножения матрицы на число следует, что умножение нулевой матрицы на число ноль даст нулевую матрицу, а произведение произвольного числа и нулевой матрицы есть нулевая матрица.

Умножение матрицы на число - примеры и их решение.

Разберемся с проведением операция умножения матрицы на число на примерах.

Пример.

Найдите произведение числа 2 и матрицы .

Решение.

Чтобы умножить матрицу на число, нужно каждый ее элемент умножить на это число:

Пример.

Выполните умножение матрицы на число .

Решение.

Умножаем каждый элемент заданной матрицы на данное число:

Операция умножения двух матриц.

Определение операции умножения двух матриц.

Операция умножения двух матриц А и В определяется только для случая, когда ЧИСЛО СТОЛБЦОВ МАТРИЦЫ А РАВНО ЧИСЛУ СТРОК МАТРИЦЫ В .

Определение.

Произведение матрицы А порядка и матрицы В порядка - это такая матрица С порядка , каждый элемент которой равен сумме произведений элементов i-ой строки матрицы А на соответствующие элементы j-ого столбца матрицы В , то есть,


Таким образом, результатом операции умножения матрицы порядка на матрицу порядка является матрица порядка .

Умножение матрицы на матрицу - решения примеров.

Разберемся с умножением матриц на примерах, после этого перейдем к перечислению свойств операции умножения матриц.

Пример.

Найдите все элементы матрицы С , которая получается при умножении матриц и .

Решение.

Порядок матрицы А равен p=3 на n=2 , порядок матрицы В равен n=2 на q=4 , следовательно, порядок порядок произведения этих матриц будет p=3 на q=4 . Воспользуемся формулой

Последовательно принимаем значения i от 1 до 3 (так как p=3 ) для каждого j от 1 до 4 (так как q=4 ), а n=2 в нашем случае, тогда

Так вычислены все элементы матрицы С , и матрица, полученная при умножении двух заданных матриц, имеет вид .

Пример.

Выполните умножение матриц и .

Решение.

Порядки исходных матриц позволяют провести операцию умножения. В результате мы должны получить матрицу порядка 2 на 3.

Пример.

Даны матрицы и . Найдите произведение матриц А и В , а также матриц В и А .

Решение.

Так как порядок матрицы А равен 3 на 1 , а матрицы В равен 1 на 3 , то А⋅В будет иметь порядок 3 на 3 , а произведение матриц В и A будет иметь порядок 1 на 1 .

Как видите, . Это одно из свойств операции умножения матриц.

Свойства операции умножения матриц.

Если матрицы А , В и С подходящих порядков, то справедливы следующие свойства операции умножения матриц .

Следует отметить, что при подходящих порядках произведение нулевой матрицы О на матрицу А дает нулевую матрицу. Произведение А на О также дает нулевую матрицу, если порядки позволяют проводить операцию умножения матриц.

Среди квадратных матриц существуют так называемые перестановочные матрицы , операция умножения для них коммутативна, то есть . Примером перестановочных матриц является пара единичной матрицы и любой другой матрицы того же порядка, так как справедливо .

Приоритет операций над матрицами.

Операции умножения матрицы на число и умножения матрицы на матрицу наделены равным приоритетом. В то же время эти операции имеют приоритет выше, чем операция сложения двух матриц. Таким образом, сначала выполняется умножение матрицы на число и умножение матриц, а уже потом производится сложение матриц. Однако, порядок выполнения операций над матрицами может быть задан явно с помощью скобок.

Итак, приоритет операций над матрицами аналогичен приоритету, присвоенному операциям сложения и умножения действительных чисел.

Пример.

Даны матрицы . Выполните с заданными матрицами указанные действия .

Решение.

Начинаем с умножения матрицы А на матрицу В :

Теперь умножаем единичную матрицу второго порядка Е на два:

Складываем две полученные матрицы:

Осталось выполнить операцию умножения полученной матрицы на матрицу А :

Следует заметить, что операции вычитания матриц одного порядка А и В как таковой не существует. Разность двух матриц по сути есть сумма матрицы А и матрицы В , предварительно умноженной на минус единицу: .

Операция возведения квадратной матрицы в натуральную степень так же не самостоятельна, так как является последовательным умножением матриц.

Подведем итог.

На множестве матриц определены три операции: сложение матриц одного порядка, умножение матрицы на число и умножение матриц подходящих порядков. Операция сложения на множестве матриц данного порядка порождает группу Абеля.

Матрицы. Виды матриц. Операции над матрицами и их свойства.

Определитель матрицы n-го порядка. N, Z,Q, R,C,

Матрицей порядка m*n называется прямоугольная таблица из чисел, содержащая m-строк и n - столбцов.

Равенство матриц:

Две матрицы называются равными, если число строк и столбцов одной из них равно соответственно числу строк и столбцов другой и соответст. эл-ты этих матриц равны.

Замечание: Эл-ты имеющие одинаковые индексы являются соответствующими.

Виды матриц:

Квадратная матрица: матрица называется квадратной, если число её строк равно числу столбцов.

Прямоугольная: матрица называется прямоугольной, если число строк не равно числу столбцов.

Матрица строка: матрица порядка 1*n (m=1) имеет вид a11,a12,a13 и называется матрицей строки.

Матрица столбец:………….

Диагональная: диагональ квадратной матрицы, идущая от верхнего левого угла к правому нижнему углу, то есть состоящая из элементов а11,а22……-называется главной диагональю. (опред: квадратная матрица все элементы которой равны нулю, кроме тех, что расположены на главной диагонали, называется диагональной матрицей.

Единичная: диагональная матрица называется единичной, если все элементы расположены на главной диагонали и равны 1.

Верхняя треугольная: А=||aij|| называется верхней треугольной матрицей, если aij=0. При условии i>j.

Нижняя треугольная: aij=0. i

Нулевая: это матрица Эл-ты которой равны 0.

Операции над матрицами.

1.Транспонирование.

2.Умножение матрицы на число.

3.Сложение матриц.


4.Умножение матриц.

Основные св-ва действия над матрицами.

1.A+B=B+A (коммутативность)

2.A+(B+C)=(A+B)+C (ассоциативность)

3.a(A+B)=aA+aB (дистрибутивность)

4.(a+b)A=aA+bA (дистриб.)

5.(ab)A=a(bA)=b(aA) (асооц.)

6.AB≠BA (отсутствует комму.)

7.A(BC)=(AB)C (ассоц.) –выполняется, если опред. Произведений матриц выполняется.

8.A(B+C)=AB+AC (дистриб.)

(B+C)A=BA+CA (дистриб.)

9.a(AB)=(aA)B=(aB)A

Определитель квадратной матрицы – определение и его свойства. Разложение определителя по строкам и столбцам. Способы вычисления определителей.

Если матрица А имеет порядок m>1, то определитель этой матрицы – число.

Алгебраическим дополнением Aij эл-та aij матрицы А называется минор Mij, умноженный на число

ТЕОРЕМА1: Определитель матрицы А равен сумме произведений всех элементов произвольной строки (столбца) на их алгебраические дополнения.

Основные свойства определителей.

1. Определитель матрицы не изменится при её транспонировании.

2. При перестановки двух строк (столбцов) определитель меняет знак, а абсолютная величина его не меняется.

3. Определитель матрицы, имеющий две одинаковые строки (столбцы) равен 0.

4.При умножении строки (столбца) матрицы на число её определитель умножается на это число.

5. Если одна из строк (столбцов) матрицы состоит из 0, то определитель этой матрицы равен 0.

6. Если все элементы i-ой строки (столбца) матрицы представлены в виде суммы двух слагаемых, то её определитель можно представить в виде суммы определителей двух матриц.

7. Определитель не изменится, если к элементам одного столбца (строки) прибавить соответственно эл-ты другого столбца (строки) предварительно умнож. на одно и того же число.

8.Сумма произвольных элементов какого либо столбца (строки) определителя на соответствующее алгебраическое дополнение элементов другого столбца (строки) равна 0.

https://pandia.ru/text/78/365/images/image004_81.gif" width="46" height="27">

Способы вычисления определителя:

1. По определению или теореме 1.

2. Приведение к треугольному виду.

Определение и свойства обратной матрицы. Вычисление обратной матрицы. Матричные уравнения.

Определение: Квадратная матрица порядка n, называется обратной к матрице А того же порядка и обозначается

Для того чтобы для матрицы А существовала обратная матрица необходимо и достаточно, чтобы определитель матрицы А был отличен от 0.

Свойства обратной матрицы:

1. Единственность: для данной матрицы А её обратная – единственная.

2. определитель матрицы

3. Операция взятия транспонирования и взятие матрицы обратной.

Матричные уравнения:

Пусть А и В две квадратные матрицы того же порядка.

https://pandia.ru/text/78/365/images/image008_56.gif" width="163" height="11 src=">

Понятие линейной зависимости и независимости столбцов матрицы. Свойства линейной зависимости и линейной независимости системы столбцов.

Столбцы А1,А2…Аn называются линейно зависимыми, если существует их не тривиальная линейная комбинация, равная 0-му столбцу.

Столбцы А1,А2…Аn называются линейно независимыми, если существует их не тривиальная линейная комбинация, равная 0-му столбцу.

Линейная комбинация называется тривиальной, если все коэффициенты С(l) равны 0 и не тривиальной в противном случае.


https://pandia.ru/text/78/365/images/image010_52.gif" width="88" height="24">

2.для того чтобы столбцы были линейно зависимы необходимо и достаточно, чтобы какой-нибудь столбец являлся линейной комбинацией других столбцов.

Пусть 1 из столбцов https://pandia.ru/text/78/365/images/image014_42.gif" width="13" height="23 src=">является линейной комбинацией других столбцов.

https://pandia.ru/text/78/365/images/image016_38.gif" width="79" height="24"> линейно зависимы, то и все столбцы линейно зависимы.

4. Если система столбцов линейно независима, то любая её подсистема так же линейно независима.

(Всё что сказано относительно столбцов, справедливо и для строк).

Миноры матрицы. Базисные миноры. Ранг матрицы. Метод окаймляющих миноров вычисления ранга матрицы.

Минором порядка к матрицы А называется определитель элементы которого расположены на пересечении к-строк и к-стролбцов матрицы А.

Если все миноры к-го порядка матрицы А =0, то любой минор порядка к+1 тоже равен 0.

Базисный минор.

Рангом матрицы А называется порядок её базисного минора.

Метод окаймляющих миноров: - Выбираем не нулевой элемент матрицы А (Если такого элемента не существует, то ранг А =0)

Окаймляем минор предыдущий 1-го порядка минором 2-го порядка. (Если этот минор не равен 0, то ранг >=2) Если ранг этого минора =0, то окаймляем выбранный минор 1-го порядка другими минорами 2-го порядка. (Если все миноры 2-го порядка =0, то ранг матрицы = 1).

Ранг матрицы. Способы нахождения ранга матрицы.

Рангом матрицы А называется порядок его базисного минора.

Способы вычисления:

1) Метод окаймляющих миноров: -Выбираем ненулевой элемент матрицы А (если такого элемента нет, то ранг =0) – Окаймляем минор предыдущий 1-го порядка минором 2-го порядка..gif" width="40" height="22">r+1 Mr+1=0.

2)Приведение матрицы к ступенчатому виду: этот метод основан на элементарных преобразованиях. При элементарных преобразованиях ранг матрицы не меняется.

Элементарными преобразованиями называются следующие преобразования:

Перестановка двух строк (столбцов).

Умножение всех элементов некоторого столбца (строки) на число не =0.

Прибавление ко всем элементам некоторого столбцы (строки) элементов другого столбца (строки), предварительно умноженных на одно и тоже число.

Теорема о базисном миноре. Необходимое и достаточное условие равенства нулю определителя.

Базисным минором матрицы А называется минор наибольшего к-го порядка отличного от 0.

Теорема о базисном миноре:

Базисные строки (столбцы) линейно независимы. Любая строка (столбец) матрицы А являются линейной комбинацией базисных строк (столбцов).

Замечания: Строки и столбцы на пересечении которых стоит базисный минор называются соответственно базисными строками и столбцами.

a11 a12… a1r a1j

a21 a22….a2r a2j

a31 a32….a3r a3j

ar1 ar2 ….arr arj

ak1 ak2…..akr akj

Необходимые и достаточные условия равенства нулю определителя:

Для того чтобы определитель n-го порядка =0, необходимо и достаточно, чтобы его строки (столбцы) были линейно зависимы.

Системы линейных уравнений, их классификация и формы записи. Правило Крамера.

Рассмотрим систему 3-х линейных уравнений с тремя неизвестными:

https://pandia.ru/text/78/365/images/image020_29.gif" alt="l14image048" width="64" height="38 id=">

называется определителем системы.

Составим ещё три определителя следующим образом: заменим в определителе D последовательно 1, 2 и 3 столбцы столбцом свободных членов

https://pandia.ru/text/78/365/images/image022_23.gif" alt="l14image052" width="93" height="22 id=">

Доказательство. Итак, рассмотрим систему 3-х уравнений с тремя неизвестными. Умножим 1-ое уравнение системы на алгебраическое дополнение A11 элемента a11, 2-ое уравнение – на A21 и 3-е – на A31:

https://pandia.ru/text/78/365/images/image024_24.gif" alt="l14image056" width="247" height="31 id=">

Рассмотрим каждую из скобок и правую часть этого уравнения. По теореме о разложении определителя по элементам 1-го столбца

https://pandia.ru/text/78/365/images/image026_23.gif" alt="l14image060" width="324" height="42 id=">

Аналогично можно показать, что и .

Наконец несложно заметить, что

Таким образом, получаем равенство: .

Следовательно, .

Аналогично выводятся равенства и , откуда и следует утверждение теоремы.

Системы линейных уравнений. Условие совместимости линейных уравнений. Теорема Кронекера-Капелли.

Решением системы алгебраических уравнений называется такая совокупность n чисел C1,C2,C3……Cn, которая при подстановки в исходную систему на место x1,x2,x3…..xn обращает все уравнения системы в тождества.

Система линейных алгебраических уравнений называется совместной, если она имеет хотя бы одно решение.

Совместная система называется определённой, если она имеет единственное решение, и неопределённой, если она имеет бесчисленно много решений.

Условия совместности систем линейных алгебраических уравнений.

a11 a12 ……a1n x1 b1

a21 a22 ……a2n x2 b2

……………….. .. = ..

am1 am2…..amn xn bn

ТЕОРЕМА: Для того чтобы система m линейных уравнений с n неизвестными была совместной необходимо и достаточно, чтобы ранг расширенной матрицы был равен рангу матрицы А.

Замечание: Эта теорема даёт лишь критерии существования решения, но не указывает способа отыскивания решения.

10 вопрос.

Системы линейных уравнений. Метод базисного минора - общий метод отыскивания всех решений систем линейных уравнений.

A=a21 a22…..a2n

Метод базисного минора:

Пусть система совместна и RgA=RgA’=r. Пусть базисный минор расписан в верхнем левом углу матрицы А.

https://pandia.ru/text/78/365/images/image035_20.gif" width="22" height="23 src=">…...gif" width="23" height="23 src=">…...gif" width="22" height="23 src=">…...gif" width="46" height="23 src=">-…..-a

d2 b2-a(2r+1)x(r+1)-..-a(2n)x(n)

… = …………..

Dr br-a(rr+1)x(r+1)-..-a(rn)x(n)

https://pandia.ru/text/78/365/images/image050_12.gif" width="33" height="22 src=">

Замечания: Если ранг основной матрицы и рассматриваемой равен r=n, то в этом случае dj=bj и система имеет единственное решение.

Однородные системы линейных уравнений.

Система линейных алгебраических уравнений называется однородной, если все ее свободные члены равны нулю.

AX=0 – однородная система.

АХ =В – неоднородная система.

Однородные системы всегда совместны.

Х1 =х2 =..=хn =0

Теорема 1.

Однородные системы имеют неоднородные решения, когда ранг матрицы системы меньше числа неизвестных.

Теорема 2.

Однородная система n-линейных уравнений с n-неизвестными имеет не нулевое решение, когда определитель матрицы А равен нулю. (detA=0)

Свойства решений однородных систем.

Любая линейная комбинация решения однородной системы сама является решением этой системы.

α1C1 +α2C2 ; α1 и α2– некоторые числа.

А(α1C1 +α2C2) = А(α1C1) +А(α2C2) = α1(А C1) + α2(АC2) = 0,т. к. (А C1) = 0; (АC2) = 0

Для неоднородной системы это свойство не имеет места.

Фундаментальная система решений.

Теорема 3.

Если ранг матричной системы уравнения с n-неизвестными равен r, то эта система имеет n-r линейно-независимых решений.

Пусть базисный минор в левом верхнем углу. Если r< n, то неизвестные х r+1;хr+2;..хn называются свободными переменными, а систему уравнений АХ=В запишем, как Аr Хr =Вr

C1 = (C11 C21 .. Cr1 , 1,0..0)

C2 = (C21 C22 .. C2r,0, 1..0) <= Линейно-независимы.

……………………..

Cn-r = (Cn-r1 Cn-r2 .. Cn-rr ,0, 0..1)

Система n-r линейно-независимых решений однородной системы линейных уравнений с n-неизвестными ранга r называется фундаментальной системой решений.

Теорема 4.

Любое решение системы линейных уравнений есть линейная комбинация решения фундаментальной системы.

С = α1C1 +α2C2 +.. + αn-r Cn-r

Если r

12 вопрос.

Общее решение неоднородной системы.

Сон (общ. неоднор.) = Соо +Сч (частное)

АХ=В (неоднородная система) ; АХ= 0

(АСоо) +АСч = АСч = В, т. к. (АСоо) = 0

Сон= α1C1 +α2C2 +.. + αn-r Cn-r + Сч

Метод Гаусса.

Это метод последовательных исключений неизвестных (переменных) – заключается в том, что с помощью элементарных преобразований, исходная система уравнений приводится к равносильной системе ступенчатого вида, из которой последовательно, начиная с последних переменных, находят все остальные переменные.

Пусть а≠0 (если это не так, то перестановкой уравнений добиваются этого).

1)исключаем переменную х1 из второго, третьего…n-ого уравнения, умножая первое уравнение на подходящие числа и прибавляя полученные результаты ко 2-ому, 3-ему…n-ому уравнению, тогда получаем:

Получаем систему равносильную исходной.

2)исключаем переменную х2

3) исключаем переменную х3 и т. д.

Продолжая процесс последовательного исключения переменных х4;х5...хr-1 получим для (r-1)-ого шага.

Число ноль последних n-r в уравнениях означают, что их левая часть имеет вид: 0х1 +0х2+..+0хn

Если хотя бы одно из чисел вr+1, вr+2… не равны нулю, то соответственное равенство противоречиво и система (1) не совместна. Таким образом, для всякой совместной системы эта вr+1 … вm равна нулю.

Последнее n-r уравнение в системе (1;r-1) являются тождествами и их можно не принимать во внимание.

Возможны два случая:

а)число уравнений системы (1;r-1) равно числу неизвестных, т. е. r=n (в этом случае система имеет треугольный вид).

б)r

Переход от системы (1) к равносильной ей системе (1;r-1) называется прямым ходом метода Гаусса.

О нахождение переменной из системы (1;r-1) – обратным ходом метода Гаусса.

Преобразования Гаусса удобно проводить, осуществляя их не с уравнениями, а с расширенной матрицей их коэффициентов.

13 вопрос.

Подобные матрицы.

Будем рассматривать только квадратные матрицы порядка n/

Матрица А называется подобной матрице В (А~В), если существует такая неособенная матрица S, что А=S-1BS.

Свойства подобных матриц.

1)Матрица А подобна сама себе. (А~А)

Если S=Е, тогда ЕАЕ=Е-1АЕ=А

2)Если А~В, то В~А

Если А=S-1ВS => SAS-1= (SS-1)B(SS-1)=B

3)Если А~В и одновременно В~С, то А~С

Дано, что А=S1-1BS1, и В=S2-1CS2 => A= (S1-1 S2-1) C(S2 S1) = (S2 S1)-1C(S2 S1) = S3-1CS3, где S3 = S2S1

4)Определители подобных матриц равны.

Дано, что А~В, надо доказать, что detA=detB.

A=S-1 BS, detA=det(S-1 BS)= detS-1* detB* detS = 1/detS *detB*detS (сокращаем) = detB.

5)Ранги подобных матриц совпадают.

Собственные векторы и собственные значения матриц.

Число λ называется собственным значением матрицы А, если существует ненулевой вектор Х(матр. столбец) такой, что АХ= λ Х, вектор Х называется собственным вектором матрицы А, а совокупность всех собственных значений называется спектром матрицы А.

Свойства собственных векторов.

1)При умножении собственного вектора на число получим собственный вектор с тем же собственным значением.

АХ= λ Х; Х≠0

α Х => А(α Х) = α (АХ) = α(λ Х) = = λ (αХ)

2) Собственные векторы с попарно-различными собственными значениями линейно независимы λ1, λ2,.. λк.

Пусть система состоит из 1-ого вектора, сделаем индуктивный шаг:

С1 Х1 +С2 Х2 + .. +Сn Хn = 0 (1) – умножаем на А.

С1 АХ1 +С2 АХ2 + .. +Сn АХn = 0

С1 λ1 Х1 +С2 λ2 Х2 + .. +Сn λn Хn = 0

Умножаем на λn+1 и вычтем

С1 Х1 +С2 Х2 + .. +Сn Хn+ Сn+1 Хn+1 = 0

С1 λ1 Х1 +С2 λ2 Х2 + .. +Сn λn Хn+ Сn+1 λn+1 Хn+1 = 0

C1 (λ1 –λn+1)X1 + C2 (λ2 –λn+1)X2 +.. + Cn (λn –λn+1)Xn + Cn+1 (λn+1 –λn+1)Xn+1 = 0

C1 (λ1 –λn+1)X1 + C2 (λ2 –λn+1)X2 +.. + Cn (λn –λn+1)Xn = 0

Надо чтобы С1 =С2 =… = Сn = 0

Сn+1 Хn+1 λn+1 =0

Характеристическое уравнение.

А-λЕ называется характеристической матрицей для матрицы А.

Для того, чтобы ненулевой вектор Х был собственным вектором матрицы А, соответствующий собственному значению λ необходимо чтобы он являлся решением однородной системы линейно-алгебраических уравнений (А - λЕ)Х = 0

Нетривиальное решение система имеет тогда, когда det (А - XЕ) = 0 - это характеристическое уравнение.

Утверждение!

Характеристические уравнения подобных матриц совпадают.

det(S-1AS – λЕ) = det(S-1AS – λ S-1ЕS) =det(S-1 (A – λЕ)S) = det S-1 det(A – λЕ) detS= det(A – λЕ)

Характеристический многочлен.

det(A – λЕ)- функция относительно параметра λ

det(A – λЕ) = (-1)n Xn +(-1)n-1(a11+a22+..+ann)λn-1+..+detA

Этот многочлен и называется характеристическим многочленом матрицы А.

Следствие:

1)Если матрицы А~В, то сумма их диагональных элементов совпадает.

a11+a22+..+ann = в11+в22+..+вnn

2)Множество собственных значений подобных матриц совпадают.

Если характеристические уравнения матриц совпадают, то они необязательно подобны.

Для матрицы А

Для матрицы В

https://pandia.ru/text/78/365/images/image062_10.gif" width="92" height="38">

Det(Ag-λE) = (λ11 – λ)(λ22 – λ)…(λnn – λ)= 0

Для того чтобы матрица А порядка n была диагонализируема, необходимо, чтобы существовали линейно-независимые собственные вектора матрицы А.

Следствие.

Если все собственные значения матрица А различны, то она диагонализируема.

Алгоритм нахождения собственных векторов и собственных значений.

1)составляем характеристическое уравнение

2)находим корни уравнений

3)составляем систему уравнений для определения собственного вектора.

λi (A-λi E)X = 0

4)находим фундаментальную систему решений

x1,x2..xn-r, где r - ранг характеристической матрицы.

r =Rg(A - λi E)

5)собственный вектор, собственные значения λi записываются в виде:

X = С1 Х1 +С2 Х2 + .. +Сn-r Хn-r, где С12 +С22 +… С2n ≠0

6)проверяем, может ли матрица быть приведена к диагональному виду.

7)находим Ag

Ag = S-1AS S=

15 вопрос.

Базис прямой, плоскости, пространства.

https://pandia.ru/text/78/365/images/image065_9.gif" height="11">│, ││). Модуль вектора равен нулю, тогда, когда этот вектор нулевой (│ō│=0)

4.Орт вектора.

Ортом данного вектора называется вектор, который направлен одинаково с данным вектором и имеет модуль, равный единице.

Равные вектора имеют равные орты.

5.Угол между двумя векторами.

Это меньшая часть площади, ограниченная двумя лучами, исходящими из одной точки и направленные одинаково с данными векторами.

Сложение векторов. Умножение вектора на число.

1)Сложение двух векторов

https://pandia.ru/text/78/365/images/image065_9.gif" height="11">+ │≤│ │+│ │

2)Умножение вектора на скаляр.

Произведением вектора и скаляра называют новый вектор, который имеет:

а) = произведения модуля умножаемого вектора на абсолютную величину скаляра.

б) направление одинаковое с умножаемым вектором, если скаляр положителен, и противоположное, если скаляр отрицателен.

λ а(вектор)=>│ λ │= │ λ │=│ λ ││ │

Свойства линейных операций над векторами.

1.Закон коммунитативности.

2. Закон ассоциативности.

3. Сложение с нулем.

а(вектор)+ō= а(вектор)

4.Сложение с противоположным.

5. (αβ) = α(β) = β(α)

6;7.Закон дистрибутивности.

Выражение вектора через его модуль и орт.

Максимальное число линейно-независимых векторов называются базисом.

Базисом на прямой является любой ненулевой вектор.

Базисом на плоскости являются любые два некаллениарных вектора.

Базисом в пространстве является система любых трех некомпланарных векторов.

Коэффициент разложения вектора по некоторому базису называется компонентами или координатами вектора в данном базисе.

https://pandia.ru/text/78/365/images/image075_10.gif" height="11 src=">.gif" height="11 src="> выполнить действие сложения и умножения на скаляр, то в результате любого числа таких действий получим:

λ1 https://pandia.ru/text/78/365/images/image079_10.gif" height="11 src=">+...gif" height="11 src=">.gif" height="11 src="> называются линейно-зависимыми, если существует их нетривиальная линейная комбинация, равная ō.

λ1 https://pandia.ru/text/78/365/images/image079_10.gif" height="11 src=">+...gif" height="11 src=">.gif" height="11 src="> называются линейно-НЕзависимыми, если не существует их нетривиальная линейная комбинация.

Свойства линейно-зависимых и Независимых векторов:

1)система векторов, содержащая нулевой вектор линейно-зависима.

λ1 https://pandia.ru/text/78/365/images/image079_10.gif" height="11 src=">+...gif" height="11 src=">.gif" height="11 src="> были линейно-зависимыми, необходимо, чтобы какой-нибудь вектор являлся линейной комбинацией других векторов.

3)если часть векторов из системы а1(вектор), а2(вектор)… ак(вектор) линейно-зависимы, то и все вектора линейно-зависимы.

4)если все вектора https://pandia.ru/text/78/365/images/image076_9.gif" height="11 src=">.gif" width="75" height="11">

https://pandia.ru/text/78/365/images/image082_10.gif" height="11 src=">.gif" height="11 src=">)

Линейные операции в координатах.

https://pandia.ru/text/78/365/images/image069_9.gif" height="12 src=">.gif" height="11 src=">.gif" height="11 src=">.gif" height="11 src=">.gif" width="65" height="13 src=">

Свойства скалярного произведения:

1. Комутативность

3. (a;b)=0, тогда и только тогда, когда векторы ортоганальны или какой нибудь из векторов равен 0.

4. Дистрибутивность (αa+βb;c)=α(a;c)+β(b;c)

5. Выражение скалярного произведения a и b через их координаты

https://pandia.ru/text/78/365/images/image093_8.gif" width="40" height="11 src=">

https://pandia.ru/text/78/365/images/image095_8.gif" width="254" height="13 src=">

При выполнении условия () , h, l=1,2,3

https://pandia.ru/text/78/365/images/image098_7.gif" width="176" height="21 src=">

https://pandia.ru/text/78/365/images/image065_9.gif" height="11"> и называется третий вектор который удовлетворяет следующим уравнениям:

3. – правая

Свойства векторного произведения:

4. Векторное произведение координатных ортов

Ортонормированый базис.

https://pandia.ru/text/78/365/images/image109_7.gif" width="41" height="11 src=">

https://pandia.ru/text/78/365/images/image111_8.gif" width="41" height="11 src=">

Часто для обозначения ортов ортонормированного базиса используются 3 символа

https://pandia.ru/text/78/365/images/image063_10.gif" width="77" height="11 src=">

https://pandia.ru/text/78/365/images/image114_5.gif" width="549" height="32 src=">

Если - это ортонормированный базис, то

https://pandia.ru/text/78/365/images/image117_5.gif" width="116" height="15">- уравнение прямой параллельной оси ОХ

2) - уравнение прямой параллельной оси ОУ

2. Взамное расположение 2-х прямых.

Теорема 1 Пусть относительно аффинной системы координат даны уравнения прямых

А) Тогда необходимое и достаточное условие когда они пересекаются имеет вид:

Б) Тогда необходимое и достаточное условие того что прямые паралельны является условие:

B) Тогда необходимым и достаточным условием того что прямые сливаются в одну является условие:

3. Расстояние от точки до прямой.

Теорема. Расстояние от точки до прямой относительно декартовой системы координат:

https://pandia.ru/text/78/365/images/image127_7.gif" width="34" height="11 src=">

4. Угол между двумя прямыми. Условие перпендикулярности.

Пусть 2 прямые заданы относительно декартовой системы координат общими уравнениями.

https://pandia.ru/text/78/365/images/image133_4.gif" width="103" height="11 src=">

Если , то прямые перпендикулярны.

24 вопрос.

Плоскость в пространстве. Условие комплонарности вектора и плоскости. Расстояние от точки до плоскости. Условие параллельности и перпендикулярности двух плоскостей.

1. Условие комплонарности вектора и плоскости.

https://pandia.ru/text/78/365/images/image138_6.gif" width="40" height="11 src=">

https://pandia.ru/text/78/365/images/image140.jpg" alt="Безымянный4.jpg" width="111" height="39">

https://pandia.ru/text/78/365/images/image142_6.gif" width="86" height="11 src=">

https://pandia.ru/text/78/365/images/image144_6.gif" width="148" height="11 src=">

https://pandia.ru/text/78/365/images/image145.jpg" alt="Безымянный5.jpg" width="88" height="57">

https://pandia.ru/text/78/365/images/image147_6.gif" width="31" height="11 src=">

https://pandia.ru/text/78/365/images/image148_4.gif" width="328" height="24 src=">

3. Угол между 2-я плоскостями. Условие перпендикулярности.

https://pandia.ru/text/78/365/images/image150_6.gif" width="132" height="11 src=">

Если , то плоскости перпендикулярны.

25 вопрос.

Прямая линя в пространстве. Различные виды уравнения прямой линии в пространстве.

https://pandia.ru/text/78/365/images/image156_6.gif" width="111" height="19">

2. Векторное уравнение прямой в пространстве.

https://pandia.ru/text/78/365/images/image138_6.gif" width="40" height="11 src=">

https://pandia.ru/text/78/365/images/image162_5.gif" width="44" height="29 src=">

4. Каноническое уравнение прямое.

https://pandia.ru/text/78/365/images/image164_4.gif" width="34" height="18 src=">

https://pandia.ru/text/78/365/images/image166_0.jpg" alt="Безымянный3.jpg" width="56" height="51">

Матрицы, основные понятия.

Матрица- прямоугольная таблица А, образованная из элементов некоторого множества и состоящая из mстрок иnстолбцов.

Квадратная матрица - где m=n.

Строка (вектор строка)- матрица состоит из одной строки.

Столбец (вектор столбец)- матрица состоит из одного столбца.

Транспонированная матрица- Матрица получающаяся из матрицы А путём замены строк столбцами .

Диагональная матрица- квадратная матрица у которой все элементы не лежащие на главной диагонали равны нулю.

Действия над матрицами.

1)Умножение деление матрицы на число.

Произведение матрицы А на число α называется Матрица Ахα элементы которой получаются из элементов матрицы А умножением на число α.

Пример: 7хА, ,.

2)Перемножение матриц.

Операция умножения двух матриц вводится только для случая, когда число столбцов первой матрицы равно числу строк второй матрицы.

Пример: ,, АхВ=.

Свойства умножения матриц:

А*(В*С)=(А*В)*С;

А * (В + С) = АВ + АС

(А+В)*С=АС+ВС;

а(АВ) = (аА)В,

(A+B) T =A T +B T

(АВ) Т =В T А T

3)Сложение, вычитание.

Суммой (разностью)- матриц является матрица, элементами которой являются соответственно сумма (разность) элементов исходных матриц.

c ij = a ij  b ij

С = А + В = В + А.

Вопрос 2.

Непрерывность функций в точке, на интервале, отрезке. Точки разрыва функций и их классификация.

Функция f(x), определенная в окрестности некоторой точки х 0 , называется непрерывной в точке х 0 , если предел функции и ее значение в этой точке равны, т.е.

Функция f(x) называется непрерывной в точке х 0 , если для любого положительного числа e>0 существует такое число D>0, что для любых х, удовлетворяющих условию

верно неравенство .

Функция f(x) называется непрерывной в точке х = х 0 , если приращение функции в точке х 0 является бесконечно малой величиной.

f(x) =f(x 0) +a(x)

где a(х) – бесконечно малая при х®х 0 .

Свойства непрерывных функций.

1) Сумма, разность и произведение непрерывных в точке х 0 функций – есть функция, непрерывная в точке х 0 .

2) Частное двух непрерывных функций – есть непрерывная функция при условии, чтоg(x) не равна нулю в точке х 0 .

3) Суперпозиция непрерывных функций – есть непрерывная функция.

Это свойство может быть записано следующим образом:

Если u=f(x),v=g(x) – непрерывные функции в точке х = х 0 , то функцияv=g(f(x)) – тоже непрерывная функция в этой точке.

Функция f (x ) называетсянепрерывной на интервале (a ,b ), если она непрерывна в каждой точке этого интервала.

Свойства функций, непрерывных на отрезке.

Функция, непрерывная на отрезке, ограничена на этом отрезке, т.е. на отрезке выполняется условие –M  f(x)  M.

Доказательство этого свойства основано на том, что функция, непрерывная в точке х 0 , ограничена в некоторой ее окрестности, а если разбивать отрезок на бесконечное количество отрезков, которые “стягиваются” к точке х 0 , то образуется некоторая окрестность точки х 0 .

Функция, непрерывная на отрезке , принимает на нем наибольшее и наименьшее значения.

Т.е. существуют такие значения х 1 и х 2 , что f(x 1) = m, f(x 2) = M, причем

m  f(x)  M

Отметим эти наибольшие и наименьшие значения функция может принимать на отрезке и несколько раз (например – f(x) = sinx).

Разность между наибольшим и наименьшим значением функции на отрезке называется колебанием функции на отрезке.

Функция, непрерывная на отрезке , принимает на этом отрезке все значения между двумя произвольными величинами.

Если функция f(x) непрерывна в точке х = х 0 , то существует некоторая окрестность точки х 0 , в которой функция сохраняет знак.

Если функция f(x)- непрерывная на отрезке и имеет на концах отрезка значения противоположных знаков, то существует такая точка внутри этого отрезка, где f(x) = 0.

Задачи линейной алгебры. Понятие матрицы. Виды матриц. Операции с матрицами. Решение задач на преобразование матриц.

При решении различных задач математики очень часто приходится иметь дело с таблицами чисел, называемых матрицами. С помощью матриц удобно решать системы линейных уравнений, выполнять многие операции с векторами, решать различные задачи компьютерной графики и другие инженерные задачи.

Матрицей называется прямоугольная таблица из чисел, содержащая некоторое количество m строк и некоторое количество п столбцов. Числа т и п называются порядками матрицы. В случае, если т = п, матрица называется квадратной, а число m = n - ее порядком.

В дальнейшем для записи матриц будут применяться либо сдвоенные черточки, либо круглые скобки:

Или

Для краткого обозначения матрицы часто будет использоваться либо одна большая латинская буква (например, A), либо символ || a ij || , а иногда с разъяснением: А = || a ij || = (a ij), где (i = 1, 2, ..., т, j=1, 2, ..., n).

Числа a ij , входящие в состав данной матрицы, называются ее элементами. В записи a ij первый индекс і означает номер строки, а второй индекс j - номер столбца. В случае квадрат-ной матрицы

(1.1)

вводятся понятия главной и побочной диагоналей. Главной диагональю матрицы (1.1) называется диагональ а 11 а 12 a nn идущая из левого верхнего угла этой матрицы в правый нижний ее угол. Побочной диагональю той же матрицы называ­ется диагональ а n 1 а (n -1)2 a 1 n , идущая из левого нижнего угла в правый верхний угол.

Основные операции над матрицами и их свойства.

Перейдем к определению основных операции над матрицами.

Сложение матриц. Суммой двух матриц A = || a ij || , где и В = || b ij || , где (i = 1, 2, ..., т, j=1, 2, ..., n) одних и тех же порядков т и п называется матрица С = || c ij || (і =1,2, ..., т; j = 1, 2, ...., п) тех же порядков т и п, элементы с ij которой определяются по формуле

, где (i = 1, 2, ..., т, j=1, 2, ..., n) (1.2)

Для обозначения суммы двух матриц используется запись С = А + В. Операция составления суммы матриц называется их сложением. Итак, по определению:

+ =

Из определения суммы матриц, а точнее из формул (1.2) непосредственно вытекает, что операция сложения матриц обладает теми же свойствами, что и операция сложения веществен-ных чисел, а именно:

1) переместительным свойством: А + В = В + А,

2) сочетательным свойством: (A + B) + С = А + (В + С).

Эти свойства позволяют не заботиться о порядке следования слагаемых матриц при сложении двух или большего числа матриц.

Умножение матрицы на число. Произведением матрицы A = || a ij || , где (i = 1, 2, ..., m, j=1, 2, ..., n) на вещественное число l, называется матрица С = || c ij || (і =1,2, ..., m; j = 1, 2, ...., n) , элементы которой определяются по формуле:

, где (i = 1, 2, ..., т, j=1, 2, ..., n) (1.3)

Для обозначения произведения матрицыі на число используется запись С = l A или С = А l. Операция составления произ­ведения матрицы на число называется умножением матрицы на это число.

Непосредственно из формулы (1.3) ясно, что умножение матрицы на число обладает следующими свойствами:

1) сочетательным свойством относительно числового множителя: (l m) A = l (m A);

2) распределительным свойством относительно суммы матриц: l (A + B) = l A + l B;

3) распределительным свойством относительно суммы чисел: (l + m) A = l A + m A

Замечание. Разностью двух матриц А и В одинаковых порядков т и п естественно назвать такую матрицу С тех же порядков т и п, которая в сумме с матрицей B дает матрицу A. Для обозначения разности двух матриц используется естественная запись: С = A - В.

Очень легко убедиться в том, что разность С двух матриц А и В может быть получена по правилу С = A + (–1) В.

Произведение матриц или перемножение матриц.

Произведением матрицы A = || a ij || , где (i = 1, 2, ..., m, j = 1, 2, ..., n) имеющей по­рядки, соответственно равные т и n, на матрицу В = || b ij || , где (i = 1, 2, ..., n , j=1, 2, ..., р), имеющую порядки, соответственно равные n и р, называется матрица С = || c ij || (і =1,2, ..., m; j = 1, 2, ...., р) , имеющая порядки, соответственно равные т и р элементы которой определя-ются по формуле:

где (i = 1, 2, ..., m, j = 1, 2, ..., p) (1.4)

Для обозначения произведения матрицыі А на матрицу В используют запись С = А × В . Операция составления произведения матрицы А на матрицу В называется перемножением этих матриц.

Из сформулированного выше определения вытекает, что матрицу А можно умножить не на всякую матрицу В, необходимо, чтобы число столбцов матрицы А было равно числу строк матрицы В.

Формула (1.4) представляет собой правило составления элементов матрицы С, являющейся произведением матрицы А на матрицу В. Это правило можно сформулировать и словесно: элемент c i j стоящий на пвресечении і-й строки и j-го столбца матрицьі С = А В, равен сумме попарных произведений соответствующих элементов і-й строки матрицы А и j-го столбца матрицы В.

В качестве примера применения указанного правила приведем формулу перемножения квадратных матриц второго порядка.

× =

Из формулы (1.4) вытекают следующие свойства произведения матрицы А на матри-цу В:

1) сочетательное свойство: (А В) С = А (В С);

2) распределительное относительно суммы матриц свойство:

(A + B) С = А С + В С или A (В + С) = A В + А С.

Вопрос о перестановочном (переместительном) свойстве произведения матрицы A на матрицу В имеет смысл ставить лишь для квадратных матриц A и В одинакового порядка.

Приведем важные частные случаи матриц, для которых справедливо и переста-новочное свойство. Две матрицы для произведения которых справедливо перестановочное свойство, принято називать коммутирующими.

Среди квадратных матриц выделим класс так называемых диагональных матриц, у каждой из которых элементы, расположенные вне главной диагонали, равны нулю. Каждая диа-гональная матрица порядка п имеет вид

D = (1.5)

где d 1 , d 2 , , d n -какие угодно числа. Легко видеть, что если все эти числа равны между собой, т. е. d 1 = d 2 = … = d n то для любой квадратной матрицы А порядка п справедливо равенство А D = D А.

Среди всех диагональных матриц (1.5) с совпадающими элементами d 1 = d 2 = … = d n = = d особо важную роль играют две матрицы. Первая из этих матриц получается при d = 1, называется единичной матрицей n Е. Вторая матрица получается при d = 0 , называется нулевой матрицей n -го порядка и обозначается символом O. Таким образом,

E = O =

В силу доказанного выше А Е = Е А и А О = О А. Более того, легко показать, что

А Е = Е А = А, А О = О А = 0. (1.6)

Первая из формул (1.6) характеризует особую роль единичной матрицы Е, аналогичную той роли, которую играет число 1 при перемножений вещественных чисел. Что же касается особой роли нулевой матрицы О, то ее выявляет не только вторая из формул (1.7), но и элементарно проверяемое равенство

А + 0 = 0 + А = А.

В заключение заметим, что понятие нулевой матрицы можно вводить и для неквадрат-ных матриц (нулевой называют любую матрицу, все элементы которой равныї нулю).

Блочные матрицы

Предположим, что некоторая матрица A = || a ij || при помощи горизонтальных и вертикальных прямых разбита на отдельные прямоугольные клетки, каждая из которых представляет собой матрицу меньших размеров и называется блоком исходной матрицы. В таком случае возникает возможность рассмотрения исходной матрицы А как некоторой новой (так называемой б л о ч н о й) матрицыі А = || A a b || , элементами которой служат указанные блоки. Указанные элементы мы обозначаем большой латинской буквой, чтобы подчеркнуть, что они являются, вообще говоря, матрицами, а не числами и (как обычные числовые элементы) снабжаем двумя индексами, первый из которых указывает номер «блочной» строки, а второй - номер «блочного» столбца.

Например, матрицу

можно рассматривать как блочную матрицу

элементами которой служат следующие блоки:

Замечательным является тот факт, что основные операции с блочными матрицами совершаются по тем же правилам, по которым они совершаются с обычными числовыми матрицами, только в роли элементов выступают блоки.

Понятие определителя.

Рассмотрим произвольную квадрат­ную матрицу любого порядка п:

A = (1.7)

С каждой такой матрицей свяжем вполне определенную числен­ную характеристику, называемую определителем, соответствующим этой матрице.

Если порядок n матрицы (1.7) равен единице, то эта матрица состоит из одного элемен-та а i j определителем первого порядка соответствующим такой матрице, мы назовем величину этого элемента.

то определителем второго порядка, соответствующим такой мат­рице, назовем число, равное а 11 а 22 - а 12 а 21 и обозначаемое одним из символов:

Итак, по определению

(1.9)

Формула (1.9) представляет собой правило составления определителя второго порядка по элементам соответствующей ему матрицы. Словесная формулировка этого правила такова: определитель второго порядка, соответствующий матрице (1.8), равен разности произведения элементов, стоящих на главной диагонали этой матрицы, и произведения элементов, стоящих на побочной ее диагонали. Определители второго и более высоких порядков находят широкое применение при решении систем линейных уравнений.

Рассмотрим, как выполняются операции с матрицами в системе MathCad . Простейшие операции матричной алгебры реализованы в MathCad в виде операторов. Написание операторов по смыслу максимально приближено к их математическому действию. Каждый оператор выражается соответствующим символом. Рассмотрим матричные и векторные операции MathCad 2001. Векторы являются частным случаем матриц размерности n x 1, поэтому для них справедливы все те операции, что и для матриц, если ограничения осо­бо не оговорены (например, некоторые операции применимы только к квадратным матрицам n x n ). Какие-то действия допустимы только для векторов (например, скалярное произведение), а какие-то, несмотря на одинако­вое написание, по-разному действуют на векторы и матрицы.


В появившемся диалоге задайте число строк и столбцов матрицы.

q После нажатия кнопки OK открывается поле для ввода элементов матрицы. Для того, чтобы ввести элемент матрицы, установите курсор в отмеченной позиции и введите с клавиатуры число или выражение.

Для того, чтобы выполнить какую-либо операцию с помощью панели инструментов, нужно:

q выделить матрицу и щелкнуть в панели по кнопке операции,

q или щелкнуть по кнопке в панели и ввести в помеченной позиции имя матрицы.

Меню “Символы” содержит три операции - транспонирование, инвертирование, определитель .

Это означает, например, что вычислить определитель матрицы можно, выполнив команду Символы/Матрицы/Определитель .

Номер первой строки (и первого столбца) матрицы MathCAD хранит в переменной ORIGIN. По умолчанию отсчет ведется от нуля. В математической записи чаще принято вести отсчет от 1. Для того, чтобы MathCAD вел отсчет номеров строк и столбцов от 1, нужно задать значение переменной ORIGIN:=1.

Функции, предназначенные для работы с задачами линейной алгебры, собраны в разделе “Векторы и матрицы” диалога “вставить функцию” (напоминаем, что он вызывается кнопкой на панели “Стандартные”). Основные из этих функций будут описаны позже.

Транспонирование

Рис.2 Транспонирование матриц

В MathCAD можно как складывать матрицы, так и вычитать их друг из друга. Для этих операторов применяются символы <+> или <-> соответст­венно. Матрицы должны иметь одинаковую размерность, иначе будет выда­но сообщение об ошибке. Каждый элемент суммы двух матриц равен сумме соответствующих элементов матриц-слагаемых (пример на рис.3).
Кроме сложения матриц, MathCAD поддерживает операцию сложения матрицы со скалярной величиной, т.е. числом (пример на рис.4). Каждый элемент результирующей матрицы равен сумме соответст-вующего элемента исходной матрицы и скалярной величины.
Чтобы ввести символ умножения, нужно нажать клавишу со звездочкой <*> или воспользоваться панелью инструментовMatrix (Матрица), нажав на ней кнопку Dot Product (Умножение) (рис.1). Умножение матриц обозначается по умолчанию точкой, как показано в примере на рис 6. Символ умножения матриц можно выбирать точно так же, как и в скалярных выражениях.
Еще один пример, относящийся к умножению вектора на матрицу-строку и, наоборот, строки на вектор, приведен на рис. 7. Во второй строке этого примера показано, как выглядит формула при выборе отображения оператора умноженияNo Space (Вместе). Однако тот же самый оператор умножения действует на два вектора по-другому.

Похожая информация.